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Abstract

In this paper, we deal with the problem of categoriz-
ing different underwater habitat types. Previous works on
solving this categorization problem are mostly based on the
analysis of underwater images. In our work, we design a
system capable of categorizing underwater habitats based
on underwater video content analysis since the temporally
correlated information may make contribution to the cat-
egorization task. However, the task is very challenging s-
ince the underwater scene in the video is continuously vary-
ing because of the changing scene and surface condition-
s, lighting, and the viewpoint. To that end, we investigate
the utility of two approaches to underwater video classifi-
cation: the common spatio-temporal interest points (STIPs)
and the video texture dynamic systems, where we model the
underwater footage using dynamic textures and construct a
categorization framework using the approach of the Bag-of-
Systems(BoSs). We also introduce a new underwater video
data set, which is composed of more than 100 hours of
annotated video sequences. Our results indicate that, for
the underwater habitat identification, the dynamic texture
approach has multiple benefits over the traditional STIP-
based video modeling.

1. Introduction

Recent years have witnessed an incredible growth of ma-
rine economy. However, with the increasing human ac-
tivities, the stability of marine ecosystems is facing severe
threats due to pollution, overfishing, exploitation of under-
water sources, etc. Hence, a system with the function of
monitoring and analyzing the change and damage of the
marine environment would be highly advantageous in the
monitoring and protection of this invaluable habitat. In this
paper, we design a system capable of categorizing different
underwater habitat types. With the help of this system, one
will be able to build detailed maps of different ecosystem-
s and then identify the degree of destruction to the marine
environment.
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Figure 1. Visual images captured via a high resolution underwater
cartographic HD camera

Many recent works on underwater object or scene clas-
sification are based upon the analysis of images collected
by underwater visual sensors [6, 9, 7, 11]. In our work, the
classification problem is faced by exploiting theories and
techniques provided by underwater video analysis since the
temporally correlated visual information may make contri-
bution to distinguish different kind of habitats.

Obtaining compelling visual categorization result on the
underwater video footage can be a difficult task for two rea-
sons. Firstly, systematically describing distinction among
various habitat types from a video set, such as the scenes
in Figure 1, is often challenging for experts themselves be-
cause of simultaneous occurrence of multiple and uncertain
habitat identifiers, such as the types or the density of sea-
grass. Secondly, although several detectors and descriptors
[8, 3, 13] have shown strong results in modeling space-time
video sequences, especially in tasks such as object and ac-
tion recognition problems, the state-of-the-art approaches
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have poor performance in our scenario since the underwater
scene is continuously varying in the appearance, illumina-
tion, artifacts from surface deformations (waves), light scat-
ter, as well as the viewpoints of camera by which the video
sequences were taken. Last but not the least, the sparseness
of annotated observation data and shortage of relevant ref-
erences on underwater video categorization problem make
this task challenging beyond typical visual sequence cate-
gorization problems.

Most recent approaches to video content analysis have
focused on identification of space-time interest points. In
[8], Laptev and Lindeberg proposed the Harris3D detector,
which compute a spatiotemporal second-moment matrix at
each video point using independent spatial and temporal
values. The HOG/HOF introduced in [8] was utilized to de-
scribe the character in the selected interest points. Another
detector was proposed by Dollar in [3], which is based on
temporal Gabor filters and a 2D spatial Gaussian smooth-
ing kernel. Interest points are selected as local maxima and
then described by Cuboid descriptor, which concatenates on
the computing of local gradients for each pixel in a patch
centered at each interest point. Willems proposed Hessian
detector [13] as a spatiotemporal extension of the Hes-
sian saliency measure. All these works have shown great
success for many spatiotemporal video content recognition
tasks such as object and scene recognition.

However, all the above approaches are based on local in-
terest points extraction, and this property makes it unreason-
able to utilize these detectors and descriptors in our problem
because, in our case, we are interested in the motion of the
whole underwater scene where every point may contribute
to identification of the scene. As a result, we seek to de-
scribe patches instead of specific interest points. Dynamic
texture related approaches [4, 12, 1] perform very well in
modeling and synthesizing space-time video patches. Dy-
namic textures are sequences of images of moving scenes
that exhibit certain stationary properties in time, such as the
water on the surface of a lake, the flag fluttering in the wind,
etc. Among several strongly performing approaches, Doret-
to’s [4] use of linear dynamic systems(LDSs) shows good
generalization properties and robustness to scene artifacts.
In this paper, we focus on using Linear Dynamic Systems
to model underwater scenes and then categorize them into
different habitat types.

In order to make the variation of viewpoints in the un-
derwater video have less impact on the categorization preci-
sion, we model video sequences as Bag-of-Systems(BoSs),
inspired by the Bag-of-Feature(BoF) approach [10], where
an image is hypothesized to be identifiable by the distri-
bution of certain key features extracted from the image.
Hence, a video sequence can be represented by the distri-
bution of LDSs. However, traditional classifiers, such as N-
earest Neighbors and Support Vector Machines(SVMs) will
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not work if the original non-Euclidean distance between
LDSs is selected as the distance metrics. We need to de-
fine an indirect distance between two LDSs. In our work,
we calculate the Martin distance [2] as the metric distance
between two LDSs. Finally, by testing different settings for
the BoSs on our Posidonia Oceanica underwater video set,
we study the impact of different framework factors on the
habitat categorization task.

In this paper, we deal with the problem of categorizing
different underwater habitat types. Our first contribution is
making use of the temporal information in the video to cate-
gorize underwater habitats, rather than just isolated images.
We also introduce a new annotated underwater video data
set, which is composed of more than 100 hours of annotat-
ed video sequences taken by a high resolution underwater
cartographic HD camera.

2. Preliminaries

We firstly introduce necessary concepts that are required
to understand our approach. We introduce Linear Dynamic
Modeling and Martin distance between LDSs in this sec-
tion.

2.1. Linear Dynamic System

Given a video sequence {y(t)}/_;, we can model it as
the output of LDS as
x(t+1) = Az(t) + v(t)

u(t) ~N(0,Q) (1)

y(t) = Co + Cx(t) + w(t) w(t) ~N(,R) (2)
where z(t) is a hidden state at time ¢, A € R™*" models
the dynamics of the system, and C' € R""*" maps from the
hidden state to the output of the system. Cj is the mean of
the video sequence. And v(t) ~ N(0,Q), w(t) ~ N(0, R)
represent the measurement and processing noise. n is the
order of the LDS system, and m is number of pixels in one
frame of a video sequence.

This model decouples the dynamics of the system, which
is modeled by A, from the appearance, which is modeled by
C. Therefore, we can describe a given spatiotemporal patch
using a tuple M = (A, C). Such a feature descriptor mod-
els both the dynamics and appearance in the spatiotemporal
patch as opposed to image gradient that only models local
texture. To calculate the parameters of this dynamic system,
Doretto et al. [4] introduced a fast but suboptimal method
for identifying the system coefficients. It is suboptimal s-
ince when calculate the hidden state x(t), the equation 1 is
not enforced. The basic calculation is based on the Principal
Component Analysis(PCA) and the Singular value decom-
position(SVD).
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Figure 2. Framework of the machine learning system

2.2. Martin Distance Between LDSs

Since the classifiers do not work if the original non-
Euclidean distance between LDSs is the distance met-
rics, we need to introduce an indirect distance metric-
s. In [2], the proposed Martin distance is one effec-
tive approach. The distance between two LDSs is based
on subspace angles. Given the tuple M (A,C), the
angle is defined in observability subspace, represented as
Ox(M) = [CT,(CA)T,(CA%)T,..]T € (R)>®*". The
angle distance is calculated by solving the Lyapunov equa-
tion ATPA—P = —C'C for P, where

_ | Pu P2 2nx2n
P[Pm P22}€R )
A= |: /(1)1 14(1)2 :| c R2n><2n (4)
C=[C1 Cy]eRrRm™ (5)
The cosine of the subspace angles {6;}!*, is calculated as
cos%0; = ith eigenvalue(PﬁlPlzPingl) (6)

With the angles, the Martin distance can be calculated by

du (M, Mp)? = —In ] ] cos0; (7
=1

However, there is one limitation of Martin distance that the
number of the output pixels for both of the Linear dynamic
systems needs to be the same. This limitation can be solved
by resample and resize the video size. More detailed dis-
cussion can be found in [2].

3. Proposed System Framework and Methods

Basic system framework is described in Figure 2.
Inspired by the Bag-of-Features approach, our Bag-of-
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Systems framework can be concluded as:(1) extracting dy-
namic textures in underwater video footage and then de-
scribe them using LDS. (2) Clustering methods, such as K-
means, hierarchial clustering, are utilized on the extracted
LDSs and then cluster centers are selected as codewords.
(3) Using this codebook, we can assign labels to the LDSs,
so each video sequence can be represented by the distri-
bution of codewords. (4) Compare the distribution of code-
words from a query video sequence with video sequences in
the database, and then infer its category by the knowledge
from training set.

3.1. Feature Extraction and Description

There are two popular approaches in extracting features:
interest points approach and dense sampling. For interest
points approach, certain pixels are selected as interesting”.
This kind of points show a salient property matching certain
requirements, such as certain extreme conditions on shape,
intensity, optical flow or gradients of neighborhoods around
them. For dense sampling, fixed size patches or volumes
are extracted and described. In our scenario, it is reasonable
to use dense sampling since we are interested in the motion
of the whole underwater scene where every point may con-
tribute to identification of the scene. After dividing video
sequences into volumes, we model each volume using Lin-
ear Dynamic System and calculate coefficients for this sys-
tem. After that, every video volume can be represented by a
tuple M = (A, C) as the descriptor. Such descriptor model-
s both the dynamics and the appearance in a spatiotemporal
patch as opposed to gradients that only model local texture.

3.2. Codebook Formation

After extracting features from the whole training set, we
get {M; = (A;, C;)}L |, where T represents the total num-
ber of features. Then the Martin distance is utilized to
map the none-Euclidean distance between two LDSs to Eu-
clidean space.

To reduce computational cost in clustering process, we
firstly embed the LDSs from high order to low dimension
space. We compute the pairwise Martin distance matrix
D € R!, where [ is the dimension of embedding, such
that D;; = d(M;, M;). After that, Multidimensional S-
caling(MDS) works with pairwise distances matrix to make
dimensional reduction. When the MDS procedure is done,
we get low dimensional points {W;}7_;, which are all in
Euclidean space. All these points correspond to the LDSs
in high dimensional space respectively, which means W;
and M, are one-to-one correspondence for all ¢ from 1 to 7.
Then, K-means clustering method is applied to {W;}_,.

After clustering, we have K cluster centers {k;}X .
However, this cluster centers do not correspond to the orig-
inal space LDSs. In order to form our codewords {Z;} X |,
we find the LDSs whose corresponding words in low di-
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mension space has the least distance to the cluster centers,
such that

Zi = My, ®)

b= argmin || W; — K; 1§
J

In this way, we get our codebook Z = {7, Zs, ..., Zx },

where Z; = (A;, C;).

3.3. Video Representation

Once the codebook is formed, every video sequence can
be represented by a histogram H = [hy, ho, hg, ..., hk, ],
where h; is a weight value of the ith codeword in the video
sequence, [ is the class label of the video sequence. The
label [ has been assigned by professionals before the exper-
iment. To calculate h;, the easiest way is to calculate the
count of occurrence of the ith codeword. More sophisticat-
ed ways are the Term Frequency defined by equation 9 and
the Term Frequency Inverse Document Frequency (TF-IDF)
defined by equation 10.

Cik

hik:Ki,k:].,...,K(lndi:].,...,N (9)
> k=1 Cik
Cik N
hig = (—2—)In(— (10)
ik (22(210“6) (Nk)

where NV is the total number of video sequences in the video
set, Vi, is the number of video sequences in which code-
word k appears at least once, c;j, represents codeword k ap-
pears c;; times in the ith video sequence, h;i is the weight
of codeword k£ in the ¢th video sequence.

Once a histogram H is computed, we normalize it by its
L1 norm.

3.4. Classification

Given the training set, we can model video sequences
as {(h;,1;)}X,, where h; is a histogram extracted from
1th video sequence and [; is the class label assigned. The
classification problem can be concluded as given a query
histogram h, infer the class label for this histogram. One
simple approach to obtain the label is to use the k-nearest
neighbors(k-NN) classifier [5], where query video se-
quence is assigned the majority class label of its k closest
histograms from the training database. Another approach
is to use a discriminative classification method like kernel
SVM. The effectiveness of these two classifiers is compared
in our experiment. To calculate the distance between two
histogram, we use the X2 distance, which is define as

1 i |h1g — hoy|?

dyz2(h1,ha) = 5 hig + hog

11

5 (11)
k=1

where h;, denotes the kth element of the histogram vector

h;.
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Figure 3. Sample snapshots from underwater scenes

4. Experiment and Results

The purpose of our work is to investigate feasible ap-
proaches to categorize underwater scenes into differen-
t habitat types. In our experiment, we compare the per-
formance of the space-time interesting points(STIPs)-based
approach with the dynamic textures-based approach on our
video set. In order to test the effectiveness of the Bag-of-
System approach, we compare the performance of the BoSs
with the single LDS approach. In particular, we investigate
the impact of the volume size of dense sampling and alter-
native experimental choices for the BoSs, such as TF-IDF
versus TF weights, as well as the role of classifiers, SVM
versus K-NN, on the categorization performance.

4.1. Data Set

The underwater video data set is provided by Archipela-
gos, Institute of Marine Conservation. Approximately 100
hours of video footage was recorded via a high resolution
underwater cartographic HD camera, visualizing the benth-
ic habitat of Posidonia oceanica seagrass meadows in the
Aegean Sea of the Mediterranean Sea. The endemic sea-
grass species forms extensive meadows which extend from
intertidal zones to depths of 50-60m and are estimated to
colonize between 25,000 and 45,000 km?2 of the Mediter-
ranean basin. Video sequences were taken from different
viewpoint and scales, with various noises(e.g. subtitles and
floating of the mobile camera), causing increased difficulty
in categorization..

We select relatively representative annotations from our



Approach  Truth
STIPs 0.40
single LDS  0.63
2x2 0.78
4x4 0.88

Table 1. Average Categorization Performance for different ap-
proaches

Cl C2 C3
Cl | 0.89 | 0.11 0
C2 | 0.17 | 0.83 0
C3 | 0.07 | 0.00 | 0.93

Table 2. Confusion matrix of BoS for approach(4 x 4).

date set, which contains 3 major underwater habitat type-
s: (C1) healthy and dense oceanica seagrass; (C2) patchy
oceanica seagrass; (C3) sandy and muddy substrate. Fig-
ure 3 shows some sample frames from this database. For
each class, we extract 80 video subsequences from the w-
hole video sequences, and each of the video subsequence is
of size 720 x 480 x 3, which 720(pixels) and 480(pixels)
are the scale of video frames and 3(seconds) is the length
for each video clip.

Our experiment is conducted on the middle portion in
the video of size 720 x 360. We cut off the top and bottom
part since they are covered by noisy information like the
subtitles describing the time, depth and coordinates.

4.2. Implementation Details And Quantitative
Comparisons

1)Training and Validation. In the experiment, the
method we use to test the effectiveness of our approach
is cross-validation. Given the dataset composed of 240
labeled video subsequences(80 for each class), we divide
it into two parts as training and validation sets. We train
our model on 192 randomly picked samples(64 from each
class), and test the truth on the validation set left.

2)STIPs and Dynamic Textures. We firstly test the
performance of space-time interest points(STIPs)-based ap-
proach. This approach seeks to find space-time salient
points in video sequences and then do categorization based
on these “interesting” points. In our experiment, we on-
ly extract 16 salient points within a 3-second video sub-
sequence using the code from Ivan Laptev’s website! by
default setting. The STIPs are sparse because our video
sequences show a stationary property of moving scenes.
Within continuous frames, the change of objects or scenes
is very slow and smooth, which makes the STIPs detector
hard to recognize local space-time salient points. In order

Uhttp://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
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to get enough points, we lower down the threshold of con-
fidence which represents the degree of space-time saliency
and do categorization by the Bag-of-Feature approach. Re-
sult is shown in table 1.

It is very obvious that dynamic textures-based approach
has better performance. In our scenario, the STIPs-based
approach fails to get compelling result since we are inter-
ested in the motion of the whole scene in which every point
may contribute to the identification of the scene.

3)Effectiveness of Bag-of-System and Dense Sam-
pling. We compare the performance of the single LDS
approach with the BoSs approach and investigate the im-
pact of the size of dense sampling. For the single LDS ap-
proach, no BoSs method is utilized for categorization. Giv-
en a test video sequence, the Martin distance between the
testing LDS and LDSs in the training set is firstly calculat-
ed and then the label of its nearest neighbor is chosen as
the label for this video sequence. For the BoSs approach,
we vary the dense sampling volume size by dividing the
720 x 360 video sequence into 2 x 2, 4 x 4 spatial cells,
and the size in temporal direction is not changed and then
model each cell as a LDS. We introduce TF-IDF representa-
tion for each video and finally use K-NN classifer with k=1
to do the classification.

The overall result is shown in table 1. As the result
shows, the BoS approach performs more effectively than
the Single LDS approach. In the meanwhile, it shows that
the dense sampling size is a crucial factor to overall perfor-
mance. In our experiment, we do not do the optimization
work on the cell size.

Table 2 depicts a confusion matrix of the BoS approach
when we select 4 x 4 spatial cells (in the following analysis,
all the results are based on this size setting). The entry value
is the ratio of the column class label in the result while its
actual class label should be the row index(e.g. 0.11 means
that when we have 100 test video sequences whose actual
class label is C1 but 11 of them are assigned class label C2
in the experiment). The result is reasonable since it is easier
to mix up healthy grass with patch grass than confuse it with
the barren muddy surface.

4)Representation and Classification: As mentioned
above, we choose £ = 1 in the k-NN classifier and we
use radial basis kernel in the SVM classifier. In addition,
since our data set is relatively small, we did not use cross-
validation to tune the parameters in the classifiers. Table 3
displays the categorization performance against the choice
of classifiers and representations. Figure 4 gives a more
detailed performance demonstration on the effect of repre-
sentations and classifiers as a function of the codebook size
from 3 to 12. We can see that the k-NN classifier performs
a little better than the SVM classifier(less than 10% in table
3). In addition, the choice of the representation has little
effect on the overall result(less than 5%). We can verify the



Method Average Performance
SVM + TF 0.8333
SVM + TF-IDF 0.8095
k-NN + TF 0.8667
k-NN + TF-IDF 0.8852

Table 3. Average Categorization Performance of SVM and k-NN
with TF and TF-IDF representation
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Figure 4. Categorization performance of BoS as a function of the
codebook size.

above conclusion using the result in figure 4. The figure
also shows that the performance of classifiers is consistent
with the scale of codebook size. Consequently, consider-
ing the scale of our data set, the performance of different
classifiers and representations is not necessarily statistically
significant. Our framework is not particularly dependent on
the choice of the representation and the classifier.

5. Conclusion and Future Work

In this paper, we proposed a machine learning system
capable of categorizing different habit types. Most of pre-
vious works for categorizing underwater objects and scenes
are based on the analysis of isolated images. We investi-
gated a new approach to make use of temporal information
in underwater video sequences for categorization. This task
is very challenging because the underwater scene is contin-
uously changing in the appearance, illumination, artifact-
s from surface deformations (waves), light scatter, as well
as the viewpoints. According to the property of underwa-
ter video sequences, we selected dynamic textures and con-
struct the whole framework by the approach of the Bag-
of-Systems. The experimental results show that our BoS
system is feasible and effective to do categorization on our
video data, in contrast to the more common STIP video rep-
resentations that fail to provide appropriate descriptors for
our underwater video scenes.

In our experiment, we only use small part of video se-
quences, which has relatively representative features and is
less noisy than other video sequences. But in reality, most
of video footage is more complex and there are much more
underwater habitat types. In the future, we need to expand
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the experimental data set. Additional experimental factors
such as the optimization of patch and segmentation size,
codebook size should be investigated. Moreover, it will be
interesting to try the generalised bag-of-features techniques,
such as spare coding for classification introduced in [14],
to compare its performance with BoSs.From the perspective
of methodology, we can combine the isolated image textural
analysis with temporal information and also combine STIPs
with dynamic textures to do classification. Another interest-
ing issue is to investigate other dynamic systems(e.g. kernel
dynamic systems) to model the dynamic textures.
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